Direkt zum Hauptbereich

Support for XXE attacks in SAML in our Burp Suite extension

In this post we present the new version of the Burp Suite extension EsPReSSO - Extension for Processing and Recognition of Single Sign-On Protocols. A DTD attacker was implemented on SAML services that was based on the DTD Cheat Sheet by the Chair for Network and Data Security (https://web-in-security.blogspot.de/2016/03/xxe-cheat-sheet.html). In addition, many fixes were added and a new SAML editor was merged. You can find the newest version release here: https://github.com/RUB-NDS/BurpSSOExtension/releases/tag/v3.1

New SAML editor

Before the new release, EsPReSSO had a simple SAML editor where the decoded SAML messages could be modified by the user. We extended the SAML editor so that the user has the possibility to define the encoding of the SAML message and to select their HTTP binding (HTTP-GET or HTTP-POST).

Redesigned SAML Encoder/Decoder

Enhancement of the SAML attacker

XML Signature Wrapping and XML Signature Faking attacks have already been part of the previous EsPReSSO version. Now the user can also perform DTD attacks! The user can select from 18 different attack vectors and manually refine them all before applying the change to the original message. Additional attack vectors can also be added by extending the XML config file of the DTD attacker.
The DTD attacker can also be started in a fully automated mode. This functionality is integrated in the BurpSuite Intruder.

DTD Attacker for SAML messages

Supporting further attacks

We implemented a CertificateViewer which extracts and decodes the certificates contained within the SAML tokens. In addition, a user interface for executing SignatureExclusion attack on SAML has been implemented.

Additional functions will follow in later versions.

Currently we are working on XML Encryption attacks.

This is a combined work from Nurullah Erinola, Nils Engelbertz, David Herring, Juraj Somorovsky, and Vladislav Mladenov.

The research was supported by the European Commission through the FutureTrust project (grant 700542-Future-Trust-H2020-DS-2015-1).

Beliebte Posts aus diesem Blog

How To Spoof PDF Signatures

One year ago, we received a contract as a PDF file. It was digitally signed. We looked at the document - ignoring the "certificate is not trusted" warning shown by the viewer - and asked ourselfs:

"How do PDF signatures exactly work?"

We are quite familiar with the security of message formats like XML and JSON. But nobody had an idea, how PDFs really work. So we started our research journey.

Today, we are happy to announce our results. In this blog post, we give an overview how PDF signatures work and on top, we reveal three novel attack classes for spoofing a digitally signed PDF document. We present our evaluation of 22 different PDF viewers and show 21 of them to be vulnerable. We additionally evaluated 8 online validation services and found 6 to be vulnerable.

In cooperation with the BSI-CERT, we contacted all vendors, provided proof-of-concept exploits, and helped them to fix the issues and three generic CVEs for each attack class were issued: CVE-2018-16042

DTD Cheat Sheet

When evaluating the security of XML based services, one should always consider DTD based attack vectors, such as XML External Entities (XXE) as,for example, our previous post XXE in SAML Interfaces demonstrates.

In this post we provide a comprehensive list of different DTD attacks.

The attacks are categorized as follows:
Denial-of-Service AttacksClassic XXEAdvanced XXEServer-Side Requst Forgery (SSRF)XIncludeXSLT

Printer Security

Printers belong arguably to the most common devices we use. They are available in every household, office, company, governmental, medical, or education institution.
From a security point of view, these machines are quite interesting since they are located in internal networks and have direct access to sensitive information like confidential reports, contracts or patient recipes.

TL;DR: In this blog post we give an overview of attack scenarios based on network printers, and show the possibilities of an attacker who has access to a vulnerable printer. We present our evaluation of 20 different printer models and show that each of these is vulnerable to multiple attacks. We release an open-source tool that supported our analysis: PRinter Exploitation Toolkit (PRET) https://github.com/RUB-NDS/PRET Full results are available in the master thesis of Jens Müller and our paper. Furthermore, we have set up a wiki (http://hacking-printers.net/) to share knowledge on printer (in)security.
The hi…